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Meta-analysis on the Relation between Visuomotor Integration and 

Academic Achievement: Role of Educational Stage and Disability 
 

Abstract: Visuomotor integration (VMI) is the ability to coordinate visual perception and motor 

functioning. Measures of VMI are commonly used to assess children’s readiness for academic 

learning. Attention and investments towards VMI development are mainly focused on early 

learners, but some empirical research indicates sustained relations between VMI and academic 

achievement through middle and high school. To determine the relations between VMI and 

academic achievement, as well as moderating factors, we conducted a multilevel meta-analysis 

using a total of 96 articles and 266 effect sizes published over the past 60 years. The pooled 

effect size revealed moderate correlations between VMI and mathematical (r = .39) and reading 

(r = .34) achievement. Educational stage, disability, and intelligence were significant moderators 

of the relation between VMI and mathematics achievement, whereas educational stage and 

subdomains of reading skills were significant moderators of the relation between VMI and 

reading achievement. Implications and future research directions are discussed.  

 

Keywords: Visuomotor Integration, Academic Achievement, Mathematics, Reading, Meta-

analysis 
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1. Introduction  

Visuomotor integration (VMI) is defined as the ability to coordinate visual perception 

and motor functioning (Beery & Beery, 2006). VMI develops as part of a broader system that 

includes proprioception (i.e., awareness of body position), visual information processing, and 

motor movements (Bullock et al. 1993; Guigon & Baraduc, 2002). These competencies are 
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critical to many everyday activities, such as using utensils to eat or tying one’s shoes. Many 

academic competencies are also supported by visuomotor abilities, as in children’s use of 

fingers to count or add or during the act of handwriting (Brissiaud, 2003; Longcamp et al., 

2016). VMI also predicts academic achievement more broadly, independent of IQ and executive 

functions (Sortor & Kulp, 2003; Verdine et al., 2014). Consequently, measures of VMI are often 

used to assess children's school readiness.  

There are multiple theories as to why VMI may set the stage for, or at least be a good 

indicator of, children’s academic development. One proposal is that the many skills captured by 

measures of VMI, such as comprehending instructions, focusing attention on a task, and 

holding and manipulating writing utensils, overlap with the skills needed for success in school 

settings (Cameron et al., 2015). More directly, the development of many important skills that 

support academic development are directly influenced by visual-motor integration skills 

(Dawson & Watling, 2000); these would range from early writing to the mapping of x,y pairs to 

the coordinate plane. It has been suggested that strong visuomotor integration skills facilitate 

the acquisition of handwriting skills that in turn reduces the need to focus attention on the act 

of writing. The reduced attentional demands free working memory resources that can then be 

devoted to written content (Carlson et al., 2013).  

1.1 How VMI is Assessed 

Copying figures or drawings is considered an apt measure of VMI, as it can be used to 

assess the fidelity of the integration of visual information processing and motor coordination 

(Beery & Beery, 2006). Thus, the most commonly used methods to assess visuomotor 

integration are design copy tasks that typically require the child to copy increasingly complex 
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figures. The Beery Developmental Test of Visual-Motor Integration (VMI) and the Bender 

Gestalt Test of Visuomotor Integration are among the most often used measures of VMI (Beery 

et al., 1997; Bender, 1938).  Although the vast majority of studies use design copy tasks, other 

measures of VMI exist, such as the Grooved Pegboard Test in which the test taker is required to 

rotate a peg with a key on one side to match and insert it into a small hole (Memisevic, 2019). 

Accordingly, we assessed whether the type of assessment moderated the relation between VMI 

performance and academic achievement.   

1.2 VMI, Mathematics Achievement and Educational Stage 

There are several ways in which visuomotor integration might contribute to 

mathematical development at different educational stages. The first is the early development 

of counting competencies and the use of finger representations for facilitating the learning of 

some numerical concepts (Berch et al., 2016).  The process of enumerating (i.e., counting a 

group of objects) typically involves pointing at each object as it is counted, which helps children 

keep track of the objects that have been counted and those that remain to be counted (Fuson, 

1988; Gelman & Gallistel, 1978). This process contributes to an early understanding of the 

cardinal value of number words, which in turn, is critical for further growth in number and 

arithmetic skills (Chu et al., 2018; Geary & vanMarle, 2018) and predicts later readiness for 

learning mathematics at school entry (Geary et al., 2018).  Later in their development, children 

often use their fingers to represent quantities to be added, and sometimes subtracted, and 

move the uplifted fingers in sequence while counting (often aloud) to arrive at an answer 

(Siegler & Robinson, 1982; Birch et al., 2016). Geary and Burlingham-Dubree (1989) found that 
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the sophistication of the mix of strategies used to solve arithmetic problems was related to 

children’s visuospatial abilities. 

Further, there is evidence that using manipulatives in early education, often described 

as “hands-on learning”, can lead to a better understanding of mathematical concepts. In a 

longitudinal study, Guarino and colleagues (2013) found that using counting manipulatives (i.e., 

tangible objects used to count such as pennies or blocks) improves achievement in 

Kindergarteners. Additionally, a recent meta-analysis found small to moderate advantages with 

the use of manipulatives in children’s learning as compared to use of abstract math symbols 

(Carbonneau et al., 2013). Findings that suggest the use of kinesthetic approaches can 

sometimes facilitate students’ understanding of some areas of mathematics provides further 

evidence that visuomotor integration may be related to academic achievement (Carbonneau et 

al., 2013; Guarino et al., 2013).  

Interestingly, the early use of finger and gesture representation of numbers has created 

a connection between fingers and representation of numbers and quantitative relations that 

continues into adolescence and adulthood (Andres et al., 2008; Fischer, 2008). Studies have 

shown that hand configurations are associated with adults’ numerical representation (Andres 

et al., 2008; Fischer, 2008). For instance, Andres et al. (2008) tested the influence of the 

magnitude of a number on grip aperture (i.e., the distance between the finger and the thumb). 

When labeling the face of an object with a number, it was found that during the initial phases 

of reaching for the object, higher values led to a larger grip aperture. The grip aperture was 

adjusted to the size of the object during the second half of reaching towards the object, 

suggesting that the information relating to the number was processed during the planning 
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stage of the motor movement (Andres et al., 2008). Researchers of embodied cognition also 

proposed gesturing as an integral tool of investigating, representing, and understanding 

mathematical ideas (Núñez, 2008; Alibali & Nathan, 2012). For example, Cooperrider and 

colleagues (2016) found that adults tend to use gestures in their explanations when reasoning 

about relational systems which are prevalent in mathematics. Alibali and Nathan (2012) found 

that both students and teachers regularly produced gestures when they were trying to explain 

mathematical concepts and ideas. 

Although these studies have found relations between certain aspects of VMI (e.g., finger 

and gesture representation) and academic achievement throughout development and into 

adulthood (Siegler & Robinson, 1982; Birch et al., 2016; Andres et al., 2008; Fischer, 2008), it is 

unclear whether the magnitude of these relationships changes over time. Thus, the correlations 

between VMI and achievement were examined at different educational stages (e.g., 

elementary school, secondary school) to determine if educational stages are a significant 

moderator of this relationship. 

1.3 VMI, Reading Achievement, and Educational Stage 

The relation between VMI and reading outcomes has not been as consistently found as 

that between VMI and mathematics outcomes. Nevertheless, significant correlations between 

reading outcomes and VMI have been reported in multiple studies (Bellocchi et al., 2017; 

Becker et al., 2014; Hammil, 2004; Sortor & Kulp, 2003), although many other studies have 

found no correlation (Santi et al., 2015; Carlson et al., 2013; Goldstein et al., 1994; Morgenstern 

& McIvor, 1973). Further, there is a lack of evidence relating to how VMI may affect reading 

development during different educational stages. 
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Despite these mixed results and gaps in the literature, there is reason to believe that 

both the visual perception and motor functioning aspects of VMI may contribute to young 

students’ reading skill development. For instance, in a longitudinal study, Franceschini and 

colleagues (2012) found that poor reading skills in grades 1 and 2 could be predicted by earlier 

impaired visual search performance that was measured by the ability to identify a target 

surrounded by distractors and spatial cueing facilitation (i.e., the ability to discriminate the 

orientation of a stimulus). Further, Pham and Hasson (2014) found visuospatial working 

memory to be a significant predictor of reading ability; a related study found that visuospatial 

attention predicted word reading accuracy and mathematics achievement (Geary,  Hoard, 

Nugent, Ünal, & Scofield, 2020). There is also evidence that fine motor skills predict reading 

achievement (Son & Meisels, 2006; Iversen et al., 2005). Son and Meisels (2016) found that 

strong fine motor skills in Kindergarten predicted first grade reading achievement. Further, 

Iversen and colleagues (2005) compared a group of children with dyslexia, children identified as 

poor readers, and children identified as proficient readers on a series of motor tasks. They 

found over 50% of children in the dyslexic and poor reading groups showed conclusive motor 

coordination difficulties. It is not clear, however, whether such results reflect a direct relation 

between VMI and reading abilities or if the relation is due to a third factor, such as brain 

maturation.   

VMI may be fundamental to handwriting, given the latter is dependent on the ability to 

integrate visual perception and motor functioning (Longcamp et al., 2016; Volman, van 

Schendel, & Jonmans, 2006; Weintraub & Graham, 2000). Indeed, handwriting is the 

integration of VMI with aspects of language, including language sounds and comprehension, 
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and many of these same language abilities are engaged during the act of reading (Longcamp et 

al., 2005, Medwell & Wray, 2014). More specifically, because handwriting requires close 

attention to the form of letters and words, handwriting supports pattern recognition that can 

lead to a more fluent recall of letters and words when reading as a young child (Waterman et 

al., 2015). In other words, VMI may influence reading, at least in part, through handwriting, 

since the ability to handwrite may lead to improved fluency in letter-word identification. This 

was shown in a study by Longcamp and colleagues (2005) in which two groups of young 

children were trained to copy letters by typing or handwriting them. The children who were 

taught to handwrite exhibited greater letter recognition than the children who were taught to 

type (Longcamp et al., 2005). On the basis of these findings, a relation between VMI and 

reading achievement could emerge at a young age.  

At the same time, the relation between VMI and other reading competencies, such as 

comprehension, are not well understood. Further, the relation between VMI and reading 

performance is not well understood across educational stages. A better understanding of this 

relationship would shed light on how VMI is linked to reading development and what 

populations would benefit most from strengthening the VMI skills that might contribute to 

reading development. Accordingly, the present study examines the relation between VMI and 

reading development across educational stages, disability factors, and reading outcomes (e.g., 

reading comprehension versus letter-word identification).  

1.4 VMI and Intelligence in Predicting Academic Achievement  

Intelligence is a potential confounding factor that contributes to the relations between 

VMI and academic achievement. Intelligence is a consistent predictor of individual differences 
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in mathematics achievement as well as longitudinal gains in achievement (Bull & Lee, 2014; 

Deary, Strand, Smith, & Fernandes, 2007; Geary et al., 2017; Lee & Bull, 2016). The same is true 

for reading achievement (Peng et al., 2019; McCoach et al., 2017; Naglieri & Ronning, 2000). 

Criticisms of the empirical relation between VMI and academic achievement have highlighted 

evidence that students with intellectual disabilities not only exhibit problems that affect 

academic learning such as, perceiving and processing new information, flexible thinking, and 

applying knowledge to solving problems (Henry Bettenay, & Carney, 2011); but also often 

exhibit problems that affect visuomotor integration such as delayed motor functioning and 

sensorimotor dysfunction (Memisevic, & Sinanovic, 2012; Wuang et al., 2008). 

Intelligence Quotient (IQ) tests are used to measure intellectual abilities. In attempts to 

address this issue, multiple studies have found VMI to be a unique predictor of mathematical 

achievement when controlling for IQ (Carlson, 2013; Sortor, 2003; Kulp, 1999; Goldstein, 1994; 

Morgenstern, 1973). On the other hand, a few studies have found that VMI is no longer related 

to reading achievement once IQ is controlled (Carlson, 2013; Goldstein, 1994; Morgenstern, 

1973). Here, we assessed the relation between VMI and academic achievement across groups 

with different levels of intelligence to assess the extent to which IQ might moderate the 

relation between VMI and academic achievement. 

1.5 Present Study  

Prior findings have shown that VMI is correlated with and is a predictor of academic 

achievement and longitudinal gains in achievement (Cameron et al., 2015; Carlson et al., 2013; 

Sortor & Kulp, 2003; Verdine et al., 2014;). We extend these findings with a multilevel meta-

analysis of the relation between VMI and academic achievement, with the goal of determining 
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if these relations vary across reading and mathematics achievement and their subdomains (e.g., 

reading fluency, arithmetic), and to determine if the strength of the relations varies across 

educational stages (i.e., early childhood, elementary education, secondary education).  

Even though tests of VMI are often used to assess school readiness and academic 

performance, the unique relations between VMI and such outcomes are not fully understood or 

systematically reviewed. More specifically, the relations between VMI and academic outcomes 

in later educational stages and for students with different disabilities (e.g., mental disability vs. 

learning disability) have not been fully explored or reviewed. Educational stage and disability 

thus are the key potential moderators of interest. As noted, domain-general cognitive abilities, 

such as IQ, are potential confounding factors or might moderate the strength of the relation 

between VMI and academic outcomes.  

To our knowledge, no meta-analyses on the relations between visuomotor integration 

and academic achievement exist to date. The present study used a multilevel meta-analytic 

approach to systematically explore the relations between VMI and mathematics and reading 

outcomes across educational stages and with consideration of the potential influences of IQ 

and disabilities on the strength of the relationship between VMI and academic outcomes. These 

findings can be used to highlight the importance of measuring visuomotor integration at an 

early age, and to identify populations that would benefit most from visuomotor integration 

interventions.  

2. Methodology  

2.1 Study selection 
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This meta-analysis was conducted based on guidelines proposed by Quintana (2015). A 

two-step screening process implemented by two independent researchers was used to extract 

studies from PsychINFO, Web of Science, ERIC, and OVID [journals@OVID, MEDLINE, and Health 

and Psychosocial Instruments (HAPI)]. Terms were searched for in titles, abstracts, or keywords 

and the search was restricted to studies with samples of ages 18 and under when possible. The 

terms used to identify potentially relevant studies included: visual motor, visual-motor, 

visuomotor, math*, arithmetic, numeracy, academic achievement, read*, and literacy. The 

combined search yielded a total of 2,229 studies after 408 duplicates were removed. 

After searches were implemented, two independent researchers screened titles and 

abstracts to determine whether full texts should be retrieved. Lists of relevant studies were 

compared and any disagreements were discussed. A total of 202 full texts were retrieved. The 

two researchers then further screened the reports based on the inclusion/exclusion criterion 

shown in Table 1. After comparing the lists of the two reviewers and resolving disagreements, 

96 studies (266 effect sizes, 111,138 participants) met the inclusion criteria.  

Table 1. Inclusion and Exclusion Criteria for Screening Relevant Studies  

Criteria Inclusion Exclusion 

Language English Non-English Language 

Availability Full-text available Studies not accessible by public or 
University database 

Variables The study measured visuomotor 
integration and mathematical or 

reading achievement 

Study does not measure 
visuomotor integration and either 

mathematical or reading 
achievement 
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Statistical 
Information 

Contains information of effect size 
or the effect size can be derived 

Observational or case studies that 
only provide qualitative 

information 

Measurement Measures of visual motor 
integration include visual and 

motor processing 

Measurements includes only 
factors of VMI such as visual 

spatial or fine motor separately 

 

2.2 Data Extraction and Coding 

Information from each study was extracted to perform the analysis. The variables coded 

include: (1) year the study was published, (2) type of report (e.g., dissertation), (3) sample size, 

(4) participant demographics (i.e., disabilities, age/educational stage, gender, mean IQ, income, 

country), (5) instruments used to measure visuomotor integration, reading, and mathematics, 

(6) mathematics and reading outcome subdomains (e.g., arithmetic, comprehension) and (7) 

effect sizes.  

2.3 Moderators 

Moderators were categorized into three groups: report variables (type, year), 

participant demographics and backgrounds (educational stage, disability, Intelligence/IQ, and 

country), and measures (VMI assessment, math and reading subcategory, and math and 

reading measurement).  

2.3.1 Report Variables 

Reports were coded for type and year as displayed in Table 2. Non-peer reviewed 

publications (e.g., dissertations) were included to decrease the risk of publication bias. To 

ensure there were no differences in effect sizes due to the type of report, this was tested as a 

moderator. The number and sample sizes of studies that investigated the relations between 

VMI and achievement increased notably in the past two decades. The year of report was 
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included as a moderator to test whether methodological or instructional changes throughout 

the years affect the relationship between VMI and academic achievement. 

Table 2. Study Variables 

 

Type of report Number of Reports Participants (N) Participants (%) 

Conference paper 2 86 0.1% 

Dissertation 10 2,384 2.1% 

Journal 78 107,684 96.9% 

Report 6 984 0.9% 

Year of report Number of Reports Participants (N) Participants (%) 

1961 to 1980 23 7,906 7.1% 

1981 to 2000 21 3,656 3.3% 

2001 to 2020 52 99,576 89.6% 

 

2.3.2 Participant Demographics and Backgrounds 

Participant demographics included educational stage, disability status, mean IQ, gender, 

income, ethnicity, and continent. However, it is not possible to assess potential moderation 

effects for gender, income, and ethnicity because very few separate effect sizes were reported 

across these groups. Participant demographics are shown in Table 3. Income is not shown 

because it was not reported in 66 studies (67% of participants) and the studies that did report it 

used heterogeneous measures that were not comparable.  

Participants' educational stages were coded from studies reporting either one, some, or 

all of the following measures: mean age, age range, and grade level. Studies were 

subcategorized into three groups based on the available information. “Early childhood” 
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included studies in which participants were in Kindergarten or earlier, or 6 years of age and 

younger, or in early childhood education. These children are often referred to as early learners. 

“Elementary” included studies in which participants were in first through fifth grade or ages 7 

to 10 years, inclusive. “Secondary” included studies in which participants were in 6th to 12th 

grade or 11 years or older, inclusive. Educational stage was tested as a moderator to determine 

if the relations between VMI and academic achievement fluctuates throughout development.  

Disabilities were categorized into learning, physical, and mental disabilities. Samples 

were categorized as learning disabled if they contained participants who were reported to have 

a general learning disability or a specific learning disability (e.g., dyslexia, reading, or math 

disability). Physical disabilities were samples containing participants who had a physical illness 

or disorder, such as acute lymphoblastic leukemia or developmental coordination disorder. 

Mental disabilities were samples in which participants were diagnosed as intellectually disabled 

or having autism spectrum disorder. Disability and IQ were included as moderators because 

these are consistently related to academic achievement and thus may have an influence on the 

strength of the relation between VMI and academic achievement. Samples with typical and 

atypical groups were separated in the analyses and treated as different samples, accounting for 

within-study variance, using the multilevel meta-analysis approach.  

We also collected information on the country in which the study took place. Because 

multiple countries only had 1 effect size reported, countries were categorized by continent.  

The continent of which participants resided was tested as a moderator to examine whether 

curricular and language differences between countries could influence the correlation between 

VMI and academic achievement.  



14 

Table 3. Participant Demographics 

 

Gender Number of Reports Participants (N) Participants (%) 

Male  43,999 39.6% 

Female  43,515 39.2% 

Unreported  23,624 21.3% 

Educational Stage Group Number of Reports Participants (N) Participants (%) 

Early Childhood  29 24,751 22.3% 

Elementary 50 83,154 74.8% 

Secondary  12 1,706 1.5% 

Variety of age groups 11 1,527 1.4% 

Ethnicity Number of Reports Participants (N) Participants (%) 

White  13,440 12.1% 

Black or African American  4,560 4.1% 

Hispanic/Latino  3,146 3.8% 

Asian  308 0.3% 

Other/Mixed  303 0.3% 

Unreported   89,381 80.4% 

Disability Number of Reports Participants (N) Participants (%) 

Learning Disability 14 2,473 2.2% 

Mental Disability 9 894 0.8% 

Physical Disability 11 3,785 3.4% 

Typical Development 64 103,986 93.6% 

Mean IQ Number of Reports Participants (N) Participants (%) 

Low (40th percentile and 
below) 

 1,521 1.4% 
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Average (41st percentile 
to 59th percentile) 

 3,332 3.0% 

High (60th percentile and 
above) 

 1,693 1.5% 

Unreported  104,592 94.1% 

Continent Number of Reports Participants (N) Participants (%) 

North America (U.S.) 74 104,904 94.4% 

Europe 13 3,933 3.5% 

Asia 4 538 0.5% 

Africa 3 1,513 1.4% 

Oceania 2 250 0.2% 

 

2.3.3 Assessments  

The type of assessments used to measure VMI, mathematics, and reading was also 

noted and tested as a moderator to determine whether effect sizes between VMI and academic 

achievement differed across measures.  

Visuomotor Integration  

The assessments used to measure visuomotor integration are shown in Table 4. The 

majority of studies used the Bender Gestalt Test of Visuomotor Integration (Bender, 1938) and 

the Developmental Test of Visuomotor Integration (Beery, 1989).  

Table 4. Visuomotor Integration Assessments 

VMI Assessment Number of 
Reports 

Participants 
(N) 

Participants 
(%) 

Developmental Test of Visual-Motor 
Integration (VMI) Beery 

51 18,962 22.4% 
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Bender Gestalt Test of Visuomotor 
Integration  

26 5,139 6.1% 

Copy Design Task 3 4,801 5.7% 

Rey-Osterrieth Complex Figure 3 1,298 1.5% 

Grooved Pegboard Test 2 350 0.4% 

Design Copying subtest of the NEPSY 2 1,480 1.7% 

Developmental Test of Visual 
Perception-2: VMI quotient 

2 612 0.7% 

Bruininks–Oseretsky Test of Motor 
Proficiency 

1 62 0.1% 

Kindergarten Diagnostic Instrument 1 281 0.3% 

LAP-D (VSI component of fine motor) 1 50,805 60.0% 

Minnesota Percepto-diagnostic Test 1 203 0.2% 

The Bicycle Drawing Test 1 164 0.2% 

Visuomotor Accuracy Tracking (VAT) 1 423 0.5% 

Wide Range Assessment of Visual 
Motor Abilities (WRAVMA) 

1 66 0.1% 

 

Mathematics and Reading Achievement  

A variety of assessments were used to measure mathematics and reading achievement. 

The most common ones were subtests of the Woodcock Johnson Tests of Achievement (WJ) 

(Woodcock, 1977), Wide Range Achievement Test (WRAT) (Jastak & Wilkinson, 1984), Gates-

MacGinitie Reading Test (MacGinitie, 1978), California Achievement Test (CAT) (Tiegs & Clark, 

1977), Wechsler Individual Achievement Test (WIAT) (Wechsler, 2005), and Stanford 

Achievement Test (SAT) (Psychological Corporation, 2002). Assessments were subcategorized 

into standardized assessments, researcher developed measures, and teacher’s ratings/grading 
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reports as shown in Table 5 and Table 6. Intelligence/IQ assessments are summarized in Table 

7. 

Table 5. Mathematic Assessments 

 

Mathematic Assessment Number of 
Reports 

Participants 
(N) 

Participants 
(%) 

Researcher developed assessments 4 595 0.6% 

Standardized assessments 60 98,173 98.3% 

Teacher’s ratings/ Grading reports  5 1,152 1.2% 

 

Table 6. Reading Assessments  

 

Reading Assessment Number of 
Reports 

Participants 
(N) 

Participants 
(%) 

Researcher developed assessments 6 1,059 1.0% 

Standardized assessments 70 98,905 98.0% 

Teacher’s ratings/ Grading reports  4 935 0.9% 

 

Table 7. Intelligence/IQ Assessments 

 

Intelligence/IQ Assessment Number of 
Reports 

Participants 
(N) 

Participants 
(%) 

Wechsler Intelligence Scale for Children (WISC) 22 3,083 56.5% 

 Stanford Binet Intelligence Scales 5 668 12.2% 

Wechsler Preschool and Primary Scale of 
Intelligence (WPPSI) subtests 

5 245 4.5% 

Peabody Picture Test 3 356 6.5% 

 Slosson Intelligence Test 3 216 4.0% 

 Kaufman Brief Intelligence Test 2 82 1.5% 
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 Primary Mental Abilities Test 1 58 1.1% 

 Raven's Standard Progressive Matrices 1 28 0.5% 

 Otis Quick-scoring Mental Ability Tests 1 203 3.7% 

 Lorge-Thorndike Intelligence Test 1 242 4.4% 

 Columbia Mental Maturity Scale (CMM) 1 122 2.2% 

 Cognitive Abilities Test 1 153 2.8% 

 

2.3.4 Mathematics and Reading Subdomains  

A number of studies decomposed reading and mathematics achievement into more 

specific subdomains or competencies, such as arithmetic or reading comprehension. These 

subdomains were tested as moderators to determine whether effect sizes between VMI and 

achievement differ per specific categories. These are shown in Table 8 for mathematics and 

Table 9 for reading.  

Table 8. Mathematics Categories 

Mathematics Categories Number of 
Reports 

Participants 
(N) 

Participants 
(%) 

Arithmetic 21 7,237 72.0% 

Geometry & Measurement 2 324 3.2% 

Applied Math problem solving 6 2,486 24.7% 

 

Table 9. Reading Categories 

 

Reading Categories Number of 
Reports 

Participants 
(N) 

Participants 
(%) 

Reading Comprehension 14 7,019 44.0% 

Letter-word Identification 8 1,604 10.0% 
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Vocabulary 7 2,777 17.4% 

Reading Fluency 8 4,561 28.6% 

 

3. Statistical Analysis 

A total of 96 reports and 266 effect sizes were included in the meta-analysis. Two 

separate multilevel meta-analyses for mathematics and reading achievement were conducted 

using the ‘metafor’ package in R Studio (Viechtbauer, 2010). A total of 71 reports and 129 effect 

sizes were included in the meta-analysis of the relation between mathematics achievement and 

VMI, and 78 reports and 137 effect sizes for the reading achievement and VMI analysis.  

Multiple studies reported more than one effect size based on moderators such as age, 

achievement measures, and so forth. Forty-nine reports produced 150 effect sizes from the 

same sample. These dependent effect sizes are common issues in meta-analyses and a variety 

of methods have been developed to resolve them. We used Polanin’s (2014) 3-level method to 

avoid “double-counting” studies in a multilevel meta-analysis. The method adjusts the variance 

within each study based on the number of reported effect sizes, while maintaining the 

separation between moderators. Thus, the “first level” accounts for the variability in the 

sampling error of each individual study, the “second level” accounts for the variability within 

studies due to multiple effect sizes nested into a single study, and the “third level” accounts for 

the variability at the between-study level.  

Correlation coefficients between the subjects’ mathematics and reading outcomes and 

VMI scores were used as the effect sizes. This is because the majority of studies reported 

Pearson’s correlation coefficients to describe the relationship between VMI and academic 

achievement. A total of 18 effect sizes were reported in statistics other than correlation 
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coefficients, such as means or beta coefficients. These effect sizes were transformed into 

correlation coefficients based on statistical methods proposed by Borenstein et al. (2011).  

 Studies that used the Bender Gestalt Test reported negative correlations because this 

test is scored by the number of errors. All other assessments are scored by the number correct; 

therefore, correlations based on the Bender Gestalt Test were reversed by multiplying by -1. 

Correlation coefficients were transformed to fisher’s Z scores with corresponding variances. 

The overall effect sizes and variances were then calculated and transformed back to Pearson’s r 

for reporting. Effect sizes were interpreted as small, moderate, or large using Cohen’s 

guidelines (Cohen, 1992). 

Funnel plots were used to assess risk of publication bias using Egger’s test of the 

intercept (Egger et al., 1997).  Standardized methods to assess for publication bias have not 

been established for multilevel meta-analyses. Therefore, a random-effects model was used to 

assess for bias following procedures similar to those used by Kredlow and colleagues (2016). 

Trim and fill procedures proposed by Shi and Lin (2019) were conducted to estimate the 

number of studies missing on the left of the funnel plot to make it symmetrical and to yield a 

new effect size correcting for publication bias.  

 Lastly, moderators were tested individually. All moderator analyses were computed 

using a meta-regression model where the sub-group was inputted as a predictor. This 

determined if effect sizes differed across groups (see Harrer M. et al., 2019). All moderators 

were computed as categorical variables except for IQ which was computed as a continuous 

variable. Moderators were categorized into sub-groups because different metrics (e.g., age vs. 

grade) were often used across studies. For example, educational stage was tested as a 
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categorical variable since some studies reported the median age of the sample while others 

reported grade level. IQ was the only moderator in which this was not an issue and was 

therefore left as a continuous variable. When a significant moderator was identified, a separate 

meta-analysis was conducted for each subgroup as ad-hoc analyses to better understand which 

groups significantly differed from each other. When a group had multiple effect sizes reported 

within a study, a multilevel meta-analysis was deployed. When there were less than three 

effect sizes in a subgroup, the average effect sizes of these studies were reported instead.  

4. Results 

4.1 Mathematics and Visuomotor Integration 

The multilevel meta-analysis derived from the 129 effect sizes and 71 studies yielded a 

moderate correlation between mathematical achievement and visuomotor integration (r =.39, 

p<.0001). Q-tests for heterogeneity revealed significant variance around the mean (Range = 

0.01 - 0.85; Q(128) =1202.43, p < .0001). Regression tests for funnel plot asymmetry revealed a 

risk for publication bias (z = 3.8, p < .001). Trim and fill procedures estimated 22 missing effect 

sizes on the left side of the funnel plot (SE = 7.4). When correcting for these missing studies, the 

pooled effect size between VMI and mathematics did not change (r = .39). 

A total of 106 effect sizes were used to analyze the moderating effect of educational 

stage on the correlation between VMI and mathematical achievement; 23 effect sizes consisted 

of samples with mixed age groups and these were excluded from this analysis.  

Educational stage was a significant moderator of the correlation between mathematics 

outcomes and VMI (QM(df = 2) = 38.91; p <.0001). The contrast of the relations between VMI 

and mathematical achievement in the children in early childhood education (r=.41) and children 
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in elementary education (r=.35) was significant (p <.0001), but the relations were not different 

between elementary education students (r=.35) and secondary education students (r=.52, p = 

0.12) or between the early childhood group (r=.41) and secondary education group (r=.52, p = 

0.47). Notably, the effect sizes varied to a larger extent in the studies of secondary education 

students, but the smallest effect size reported in the studies was still larger than 0.2.  

Three of the 57 effect sizes in the elementary education group and four of the 16 effect 

sizes in the secondary education group used samples with mental disabilities. After excluding 

these samples, the effect sizes for the early childhood and elementary education groups 

remained the same, but the mean effect sizes for the secondary education group decreased to 

.38 (see Table 11). The educational stage remained a significant moderator of the overall 

relations between mathematics outcomes and VMI (QM(df = 2) = 35.98, p <.0001).  More 

specifically, the contrast between early childhood (r=.41) and elementary education (r=.35) 

remained statistically different (p < .0001). The contrast between elementary (r=.35) and 

secondary (r=.38) education did not differ (p = 0.98) nor did early (r=.41) and secondary (r=.38) 

education (p = 0.69).  

 Table 10. Effect Sizes of VMI and Mathematics Achievement by Educational Stage 

Educational 

Stage 

K N Mean 

Effect Sizes 

SE CI Range P-Value 

Early Childhood 34 24,751 0.41 0.049 0.35 - 0.54 0.01 - 0.67 <.0001 

Elementary 57 83,154 0.35 0.038 0.29 - 0.44 0.01 - 0.70 <.0001 

Secondary 16 1,706 0.52 0.091 0.35 - 0.71 0.21 - 0.85 <.0001 

K= number of effect sizes; N = overall number of participants per group. 
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Table 11. Effect Sizes of VMI and Mathematics Achievement by Educational Stage Excluding 

Mental Disabilities  

Educational 

Stage 

K N Mean 

Effect Sizes 

SE CI Range P-Value 

Early Childhood 34 21,804 0.41 0.048 0.31 - 0.47 0.01 - 0.67 <.0001 

Elementary  55 75,246 0.35 0.038 0.27 - 0.40 0.01 - 0.70 <.0001 

Secondary 12 1,319 0.38 0.073 0.26 - 0.54 0.21 - 0.64 <.0001 

K= number of effect sizes, N = overall number of participants per group. 

To test whether having a disability is a moderator of the relationship between VMI and 

mathematics outcomes, groups were categorized into learning, mental, and physical disability 

and no disability. Moderation analysis of these four groups revealed a significant effect (QM(df 

= 3) = 15.1, p = <.005). As shown by Table 12, there was a stronger relation between VMI and 

mathematics outcomes for students with mental disabilities (r=.55) relative to those with 

physical (r=.43) and learning (r=.34) disabilities and their typically achieving peers (r=.35, p = 

<.05). When combining the three groups consisting of atypical students (i.e., having a learning, 

mental, or physical disability) and testing this group against typical students, a moderating 

effect was found (QM(df = 1) = 4.01, p < .05). 

Table 12. Effect Sizes of VMI and Mathematics Achievement by Disability 

Disability K N Mean 

Effect Sizes 

SE CI Range P-Value 

Learning  10 3,513 0.34 0.070 0.22 - 0.49 0.09 - 0.70 <.0001 

Mental 12 903 0.55 0.165 0.30 - 0.94 0.35 - 0.85 <.005 

Physical 19 2,054 0.43 0.063 0.34 - 0.59 0.01 - 0.66 <.0001 



24 

No Disability 88 93,947 0.35 0.034 0.31 - 0.44 0.01 - 0.79 <.0001 

K = number of effect sizes, N = number of participants per group. 

We further explored if IQ is a moderator of the relations between VMI and 

mathematical achievement. We identified 29 studies (48 effect sizes) that reported the 

sample’s mean IQ.  A multilevel meta-regression analysis revealed that the mean IQ of the 

sample inputted into the model as a continuous variable was a significant moderator of the 

relation between mathematics and VMI (QM(df = 1) = 7.37, p < 0.01). The results suggest lower 

IQ scores predict stronger correlations between mathematics outcomes and VMI.  Table 13 

shows the differences in effect sizes between student groups of the top and bottom 50th 

percentiles.  

Table 13. VMI and Math in top and bottom 50th mean IQ percentiles  

IQ  K N Mean Effect 
Sizes 

SE CI Range P-Value 

Bottom 50th 
percentile 

25 2,603 0.49 0.079 0.369 - 0.602 0.09 - 0.85 <.0001 

Top 50th 
percentile 

23 3,910 0.39 0.054 0.294 - 0.472 0.02 - 0.79 <.0001 

K= number of effect sizes; N= overall number of participants per group; Top 50th was 100 points and above. 

Bottom 50th was 99.99 points and below.  

 

Neither type of report nor the year of the report was a significant moderator of the 

relation between mathematics outcomes and VMI (p = .47 and p = .46, respectively). Moreover, 

the measures of visuomotor integration and mathematics outcomes and different math sub-

domains were not significant moderators of the overall effect size.  

With regards to participant demographics, the continent of where the data was 

collected was a significant moderator of the relation between mathematics outcomes and VMI 
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(QM(df = 4) = 15.52, p < .01). However, the large differences between sample sizes across 

continents should be taken into consideration. Because there were only 4 reports from Asia, 

the significant influence of the continents on the overall effect size may be due to one study 

from Saudia Arabia. Here, the sample of participants was diagnosed with a mild intellectual 

disability and was an outlier (r = .83, p < .001). After removing this study, the continent of 

participants was no longer a significant moderator (p = 0.36). 

4.2 Reading and VMI 

The multivariate meta-analysis derived from 137 effect sizes in 78 reports revealed a 

moderate correlation between reading outcomes and visuomotor integration (r = .34, p < 

.0001). Q-tests for heterogeneity revealed significant variance (Q(136) =956.80, p < .0001) 

around the mean effect size.  Regression tests for funnel plot asymmetry revealed no risk for 

publication bias (z = 1.5, p = 0.15). Further, trim and fill procedures estimated no studies 

missing on the left side of the funnel plot (SE = 6.4). 

An analysis using 124 effect sizes across 70 studies revealed the educational stage as a 

significant moderator of the relation between VMI and reading outcomes (QM(df = 2) = 26.1, p 

< .0001). The correlation was the largest for the early childhood education group (r=.43) and 

significantly larger than that found for the elementary education group (r=.32, p < .001). The 

effect size for the secondary education group (r=.30) appears to be the lowest among the three 

groups, however, it did not significantly differ from that of the elementary education students 

(r=.32, p = 0.20).  
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The pooled effect size between age groups is shown in Table 13. When excluding mental 

disabilities, the educational stage is still a significant moderator (p < .0001). Excluding mental 

disabilities produced little change to the overall effect sizes in each age group (see Table 15).  

Table 14. Effect Sizes of VMI and Reading Achievement by Educational Stage 

Educational 
Status 

K N Mean 
Effect Sizes 

SE CI Range P-Value 

Early Childhood 40 19,334 0.43 0.062 0.33 - 0.57 0.14 - 0.87 <.0001 

Elementary  74 79,594 0.32 0.029 0.27 - 0.38 0.03 - 0.69 <.0001 

Secondary 10 1,206 0.30 0.074 0.17 - 0.46 0.08 - 0.70 <.0001 

K = number of effect sizes, N= number of participants per group.  

Table 15. Effect Sizes of VMI and Reading Achievement by Educational Stage excluding mental 

disabilities  

Educational 
Status 

K N Mean 
Effect Sizes 

SE CI Range P-Value 

Early Childhood 40 19,334 0.43 0.062 0.33 - 0.57 0.14 - 0.87 <.0001 

Elementary  72 79,548 0.33 0.029 0.27 - 0.38 0.03 - 0.69 <.0001 

Secondary 7 869 0.29 0.094  0.11 - 0.47 0.08 - 0.70 0.0106 

K = number of effect sizes, N= number of participants per group. 

The same method to analyze disabilities for mathematics was used for reading. There 

were no overall differences in the effect sizes across disability groups, as shown in Table 16 (p = 

0.60). However, the effect size for reading disabilities (r = .45) was larger than that found for 

other types of learning disabilities (p = 0.04).  

Table 16 Effect Sizes of VMI and Reading Achievement by Disability 

Disability K N Mean 
Effect Sizes 

SE CI Range P-Value 

Learning  11 2,814 0.31 0.079 0.17 - 0.48 0.07 - 0.66 <.0001 

Mental 11 1,024 0.41 0.073 0.30 - 0.58 0.20 - 0.57 <.0001 
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Physical 12 1,995 0.39 0.077 0.26 - 0.56 0.11 - 0.70 <.0001 

None 103 95,678 0.33 0.034 0.27 - 0.41 0.03 - 0.87 <.0001 

K = number of effect sizes, N = number of participants.  

 

Multi-level meta-analysis testing the moderation effect of mean IQ as a continuous 

variable was not significant (QM (df = 1) = 0.06, p = 0.81). The effect size between the top and 

bottom 50th percentile is shown in Table 17. 

Table 17. VMI and Reading in the top and bottom 50th mean IQ percentiles  

IQ  K N Mean Effect 
Sizes 

SE CI Range P-Value 

Top 50th 
percentile 

29 5,531 0.39 0.080 0.249 - 0.515  0.13 - 0.87 <.0001 

Bottom 50th 
percentile 

25 2,603 0.39 0.079 0.248 - 0.520 0.11 - 0.97 <.0001 

K = number of effect sizes, N = overall number of participants per IQ group; Top 50th was 100 points and above; 

Bottom 50th was 99.99 points and below.  

 

Reading categories were decomposed into comprehension, letter-word identification, 

reading fluency, and vocabulary. The effect sizes differed across these categories (Table 18, p = 

.02). Ad-hoc analyses revealed that the correlation for vocabulary (r=.30) was statistically 

different from that for comprehension (r=.39, p = 0.02) and letter-word identification (r=0.40, p 

< 0.01), but was not different from reading fluency (r=0.34, p = 0.20). Comprehension (r=.39) 

was not different from letter-word identification (r=0.40, p = 0.44) or reading fluency (r=0.34, p 

= 0.19). Letter-word identification (r=0.40) and reading fluency (r=0.34) were also not 

statistically different (p = 0.88).  

Table 18. Reading effect sizes by reading category 

Category K N Mean Effect SE P-Value 
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Sizes 

Comprehension 30 7,019 0.39 0.031 <.0001 

Letter-word Identification 13 1,604 0.40 0.106 0.0001 

Reading Fluency 18 4,561 0.34 0.044 <.0001 

Vocabulary  14 2,777 0.30 0.037 <.0001 

K = number of effect sizes, N = number of participants per group.  

 

Type and year of report were not significant moderators of the relation between 

reading outcomes and VMI (p = .25 and p= .31, respectively). The continent of participants was 

also not a significant moderator (p = .96).   

5. Discussion 

There are increased efforts to understand the development of students’ visuospatial 

abilities and examine the potential influence of embodied learning approaches on students’ 

academic performance (Abrahamson & Sánchez-García, 2016; DeSutter & Stieff, 2017; Stieff, 

Lira, & Scopelitis, 2016). Visuomotor integration is crucial to some early aspects of mathematics 

and writing/reading development, as well as for gesturing (as a means of communicating 

knowledge), but the relation between VMI and academic outcomes across development is not 

well understood. The overall results revealed that the correlations between measures of VMI 

and mathematics (r = .39) and reading (r = .34) outcomes were moderate. These relations are 

found at all ages, but were lower for older students’ reading achievement. Also, the meta-

analyses revealed that the relations between VMI and mathematics was higher for students 

with mental disabilities and students of lower IQ, and the relations between VMI and reading 

was higher for students with reading disabilities, and particularly for comprehension and letter-

word identification.  
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5.1 VMI as a Unique Indicator of Cognitive Ability Predicting Achievement 

As was described, measures of VMI are often used as indicators of school readiness 

(Sulik, 2018), on the assumption that VMI should support handwriting which in turn supports 

further learning. On the basis of this assumption, it could be that correlations between 

performance on VMI measures and mathematics and reading achievement are higher for 

younger than older students. The results provided partial support for this expectation in that 

the correlation between VMI and academic achievement was higher for 

preschool/Kindergarten than elementary children for both reading and mathematics.   

Studies that were included in this meta-analysis provide some insights into why this 

might be the case (Kim, 2017; 2018; Duran, 2018; Cameron, 2012; 2015). In a longitudinal 

study, Kim and colleagues (2018) used the KeyMath-3 Diagnostic Measurements to assess 

numeration, geometry, and measurement skills in Kindergarteners and first graders. The 

authors found a reciprocal relationship between VMI and mathematics achievement in 

Kindergarten but not at the end of first grade. One potential reason is that VMI may be more 

relevant to solving arithmetic problems with computational strategies, such as counting on 

fingers to add, rather than to directly retrieving facts from long-term memory. The former will 

occur more frequently during the early learning of mathematics and the latter more frequently 

with practice. In other words, when given the same mathematical measures of numeration 

problems, they may be measuring problem-solving in pre-K settings but fact retrieval for later 

grades in elementary school.  

A similar process might explain the higher correlation between VMI and reading 

achievement for preschool/Kindergarten than elementary school children. Kindergarteners who 
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start learning to read are essentially using problem-solving strategies and multiple cognitive 

processes whereas in later grades a word is processed through retrieval rather than being 

“sounded out.” This explanation is supported by the finding of a much stronger correlation 

between VMI and “letter-word identification” in learners of early childhood education (r = 0.43) 

as compared to learners of elementary education (r = 0.13). The pattern also suggests that VMI 

might contribute more to reading achievement in early learners compared to older ones by 

facilitating learning how to write letters that in turn facilitates phonemic awareness and early 

reading abilities. This supports the theory that greater handwriting skills leads to more efficient 

recognition of different letters and words (Waterman et al., 2015; Medwell & Wray, 2014; 

Longcamp et al., 2005). It may be the case that as retrieval of letter-sound and word-sound 

associations becomes more fluent, the benefits of VMI-facilitated writing fade.  

Further, we have found that the type of reading task was a significant moderator of the 

effect size between reading and VMI. Reading fluency and vocabulary correlated less with VMI 

than comprehension. This stronger correlation with reading comprehension and VMI is 

potentially explainable based on one of the studies used in this meta-analysis (Santi et al., 

2015). The authors of this study underscore the importance of considering different reading 

components (e.g., phonological awareness and decoding) when examining the relation 

between reading and visuomotor skills, in which many past studies have failed to do. After 

controlling for phonological awareness, decoding, and fluency, the relation between 

comprehension and VMI diminished (see Santi et al, 2015).  In other words, reading 

comprehension is dependent on multiple processes and VMI appears to correlate with one or 

several of these underlying processes.   
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As with reading, it has also been suggested that VMI might be more strongly correlated 

with mathematics achievement in younger than older students. This is because younger 

students are more dependent on finger representations of quantity or to aid in solving simple 

arithmetic problems (for reviews see Berch et al., 2016). The use of these strategies was also 

significantly correlated with spatial subtests of the WPPSI (Geary & Burlingham-Dubree, 1989). 

Therefore, it is reasonable to assume using fingers to solve math problems may be associated 

with stronger visuospatial skills. Indeed, we found that VMI was more strongly correlated 

among younger than elementary students. That said, there were modest but significant 

correlations between VMI and mathematics achievement throughout schooling, suggesting the 

relation may go beyond finger counting.   

Some neuropsychological and brain imaging studies are consistent with relations 

between some number and arithmetic competencies and visuomotor skills. In a classic study, 

Gertsmann (1940) defined a cluster of deficits associated with damage to an area of the parietal 

cortex, the angular gyrus, and adjacent regions of the occipital lobe. The deficits included 

difficulties with arithmetic calculation and finger agnosia (i.e., inability to recognize and 

differentiate different fingers). The calculation difficulties included simple problems (see also 

Henschen & Schaller, 1925), and a poor understanding of how visuospatial position in 

multicolumn problems represented different quantities (e.g., 259 + 938, and not understanding 

that the ‘5’ and ‘3’ represent sets of 10). These findings may point towards overlapping neural 

mechanisms between VMI and mathematics which may contribute to new methods in fostering 

such neural mechanisms in children.  
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Further, many studies have shown visuospatial skills are strongly correlated to 

mathematical skills in later grades and even among adults (Wei et al., 2012; Li & Geary, 2013; 

2017; Maybery & Do, 2003; Jarvis & Gathercole, 2003; Reuhkala, 2001). This could also provide 

an explanation for why correlations between early childhood and secondary education students 

did not differ. Secondary students may be more influenced by visuospatial factors due to the 

mathematical content (i.e., Geometry) introduced in later grades that requires more spatial 

thinking than in elementary grades. In a study by Duran and colleagues (2018), they found that 

although executive functions and VMI were both related to measures of Geometry, only VMI 

predicted improvement in Geometry scores. They suggested that this could be due to the 

spatial reasoning factor of VMI (Duran et al., 2018). 

In keeping with VMI as, at least in part, an indicator of cognitive ability, we found IQ to 

be a significant moderator of the relation between VMI and mathematics achievement but not 

reading achievement. Further, our results found that the relation between VMI and 

mathematics achievement was higher for lower-IQ students than average and higher-IQ 

students. This coincides with our finding that students with mental disabilities also have a 

higher correlation between VMI and mathematics achievement than typical children and 

children with physical or learning disabilities. Balsamo (2016) found a similar pattern and 

suggested that “children with higher IQ may have the benefit to be able to compensate for their 

deficits in lower order skills.” (pg. 324). Meaning, having a high IQ may play a compensatory 

role for children with poor VMI skills which may serve as an explanation for the weaker 

relationship between VMI and mathematics in children with high IQs. It is also possible that 

students with low IQs or with mental disabilities have broad deficits across many areas, which 
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would result in higher correlations among all cognitive measures whether or not having a 

higher IQ resulted in some type of compensatory ability.  

The latter is also consistent with Spearman’s Law of Diminishing Returns or the cognitive 

ability differentiation hypothesis in which correlations between cognitive abilities decrease in 

magnitude as IQ increases (Spearman, 1927). A recent meta-analysis on Spearman’s Law of 

Diminishing Returns has confirmed that mean correlations among cognitive measures do tend 

to decrease with increasing intelligence (Blum & Holling, 2017). One reason for the diminishing 

returns is that children often have varied interests from one another and thus spend more time 

in activities that would promote skill development in some areas (e.g., reading comprehension) 

than others (e.g., mathematics). Highly-intelligent students learn more quickly than other 

students and often show larger differences across domains (e.g., literary knowledge vs. 

mathematical knowledge) based on where they have invested the most learning time (Blum & 

Holling, 2017). Less intelligent students learn more slowly and thus any gaps in knowledge 

between one domain (e.g., literary) or another (e.g., mathematics) emerge at a slower pace 

than that found in more intelligent students and one result is the gap tends to be smaller. 

Research also showed that fluid IQ tends to be slightly more correlated with mathematics than 

reading, especially for broad math measures (Peng et al., 2019). If this is the case, then the 

higher correlation between VMI and mathematics outcomes among students with lower IQs 

might simply be part of this broader pattern. 

5.2 VMI as a Potential Measure of Executive Functions and Attentional Control  

An alternative explanation for the correlation between VMI and achievement is that 

VMI measures and academic measures all engage executive functions and require attentional 
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control. There is substantial evidence that executive functions relate to both visuomotor 

integration and academic achievement (Geary et al., 2017; Kim et al., 2016; Cameron et al., 

2015; Becker et al., 2014; Clark et al., 2010; Bull et al., 2008; Blair & Razza, 2007), as well as 

performance in a variety of other domains (Burgoyne & Engle, 2020; Kane & Engle, 2002). 

Executive functions are defined as higher-order cognitive processes that support planning, 

problem solving, and goal pursuit (Blair & Razza, 2007). The three components that constitute 

executive functions are working memory (i.e., ability to hold one thing in mind while engaged in 

another activity), cognitive flexibility (i.e., the ability to switch between tasks to meet a goal), 

and inhibitory control (Miyake et al., 2000). The relationship between VMI and executive 

functions is intuitive when considering the skills used in visuomotor integration that are 

dependent on EF, such as integrating attention and inhibitory control when examining an image 

and copying it. Additionally, it is postulated that the motor planning component of VMI relies 

on the working memory component of executive functions (Memisevic & Sinanovic, 2013). 

The idea that attentional control and factors of executive functions could be driving a 

correlation between VMI and academic achievement may be supported by evidence that 

children’s cognitive processes “specialize” as they develop (Johnson, 2001). Neuroimaging 

studies reveal more widespread and bilateral brain activations when a child is first learning how 

to read and solve arithmetic problems, whereas once a child becomes more fluent with reading 

or solving problems, brain activation becomes more lateralized and localized (Papanicolaou, 

2003; Qin et al., 2014; Rivera, Reiss, Eckert & Menon, 2005). It has been posited that this 

localization is due to the shift from relying less on executive functions for performing the 

academic task and more on memory retrieval as the students gains expertise in the area (Qin et 
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al., 2014). Although neuroimaging studies investigating the development of VMI are lacking, 

there is evidence that VMI also requires more engagement of executive functions during the 

early stages of learning (Maurer & Roebers, 2021). In fact, the first stage of motor learning has 

been coined as the “cognitive stage” since it relies heavily on the executive functions of motor 

movements (Doyon et al., 2003; Fitts, 1964).  Thus, it is reasonable to consider executive 

functions as contributing to the relation between the VMI and academic achievement and may 

even explain our finding of stronger correlations during early childhood than during elementary 

school . Some researchers suggested that in early childhood, children who developed VMI early 

may have more attentional bandwidth to use their cognitive resources (e.g., executive 

functions) to learn other academic skills (Cameron, 2016; Campos et al., 2000). However, this 

might not explain the high correlations found between VMI and mathematics for secondary 

students. The continual introduction of new mathematics material during schooling means that 

executive functions will likely continue to influence individual differences in mathematics 

achievement, but its contribution to VMI performance in older students is less certain. 

 Despite the clear relations between VMI and executive functions, there is some 

evidence that VMI remains a significant predictor of mathematics achievement after controlling 

for executive functions (Verdine et al., 2014, Becker et al., 2014, Duran et al. 2018). There is 

also evidence that VMI remains a significant predictor of reading achievement after controlling 

for executive functions (Cameron et al., 2015, Sulik et al., 2018, Becker et al., 2014). Further, 

there is some evidence that executive functions and VMI can compensate for deficits in the 

other (Cameron et al., 2015). Meaning, if a child was found to have both poor VMI and 

executive functions skills, they performed worse on several achievement measures than 
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children who were proficient in at least one of them, but the consistency of any such 

compensatory effects has not yet been established (Duran et al., 2018). Due to the lack of 

reporting of mean executive functions scores across samples, we were unable to determine the 

extent to which executive functions mediated the relationship between VMI and achievement. 

Although VMI has been found to be a unique predictor of academic achievement after 

controlling for executive functions, the relationship between educational stage, executive 

functions, VMI, and academic achievement is in need of further research. 

5.3 Limitations, Educational Implications, and Future Directions 

The results from this study support the use of VMI as a measure for school readiness. It 

may be especially useful for predicting academic readiness for early learners and children with 

below average IQs. Given the consistent relation between VMI and academic outcomes across 

development, children with visuomotor dysfunction may be at risk for further educational 

difficulties that extend beyond obvious visuomotor academic activities, such as handwriting.  

These correlations, however, do not mean there is a causal relation between 

visuomotor difficulties and academic learning, as both might result from a third factor, such as 

executive functions. Unfortunately, there were not enough studies to assess this possibility. The 

risk for publication bias found for mathematics should also be considered when interpreting 

these results. Although trim and fill procedures did not produce notable differences in effect 

size, there are limitations to these procedures. For example, Shi et al. (2019) tested the use of 

trim-and-fill procedures on a set of Cochrane meta-analyses and found errors on estimating the 

number of missing studies in about 20% of the meta-analyses. . In any case, the findings 
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illustrate that further research into the developmental and neural mechanisms associated with 

visuomotor integration and academic achievement could be fruitful. 

 One limitation of the moderation tests is that they are underpowered, so they should be 

interpreted with caution, particularly for those with statistically insignificant results. Lack of 

power means that the moderation tests are not adequately sensitive to detect all the 

meaningful subgroup differences or interaction effects. This is due to the limited number of 

studies in some categories, which increase the standard errors, as well as the fact that 

detecting moderation effects is more difficult than detecting main effects. Our use of multilevel 

meta-analyses could potentially increase power, but 80% power for moderation tests in meta-

analyses is uncommon (Hempel et al., 2013). Despite this drawback, we did detect several  

significant moderation effects (e.g., educational stage, disability status, and IQ moderated the 

relationship between mathematics and VMI; and educational stage and reading category 

moderated the relationship between reading and VMI which provides strong evidence of those 

subgroup differences. However, for the insignificant results, interpreting them as the “lack of 

difference” should be avoided, and more empirical studies are needed for future meta-analyses 

to detect all meaningful moderation effects with confidence.     

One particular focus for future studies is the strong relation between VMI and 

mathematical achievement in the secondary education stage. One explanation is that this may 

be related to the new content and more advanced mathematical thinking and problem-solving 

practices that are introduced in secondary education, such as algebraic and proportional 

thinking, that is dependent on attentional control and executive functions. However, only 11 

reports focused on learning in middle school and high school were identified among the 102 
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articles which resulted in a limited understanding of this relation. Another possibility is that the 

relation between VMI and mathematics in later years reflects a more general trend for 

visuospatial skills to predict math outcomes. Compared to studies of VMI, more is known about 

the t relations between visuospatial skills and mathematical achievement (e.g., Mix, 2019; 

Hawes & Ansari, 2020). Follow-up studies are needed to determine if the relation between VMI 

and later mathematics achievement is mediated by more general visuospatial abilities or if 

there is a unique relation between VMI and later mathematics.  

Experimental studies have shown that VMI can be improved through appropriate 

interventions (e.g., Cho et al., 2015; Howe et al., 2013; Ohl et al., Tzuriel & Eiboshitz, 1992). 

These interventions focus on different components or representative tasks of VMI, such as 

visual perception, bilateral coordination, and/or handwriting. Most of these interventions 

target early learners in special education programs. One area that is worthy to explore in the 

future research is the effects of the embodied engagement, defined as “purposeful body 

positions and movements that an individual engages in during a learning activity” (DeSutter & 

Stieff, 2017, p. 8), and maker-centered learning activities on students’ VMI development, given 

the large educational investment in these initiatives recently. This meta-analysis summarized 

the correlations between VMI and academic achievement, and further studies can further 

investigate the causal relations between VMI development and academic achievement with 

innovative and novel instructional approaches and learning activity designs.    
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Appendix. Table of Mathematics and Reading Effect Sizes, Educational Stage, and Disability 

Status 

 

Paper N Math 
Effect Size 

(r) 

Reading 
Effect Size 

(r) 

Educational 
Stage 

Disability 
Status 

Mean IQ 
of sample 

Aiello-Cloutier (1993) 
54 0.09 0.19 Mixed Learning 

97.3 

Aiello-Cloutier (1995) 27 0.39 0.35 Secondary Learning 96.4 

Badian (1999) 1,075 0.41 0.39 Early Learning 102.1 

Balsamo (2016) 256 0.43 0.22 Secondary Physical 100 



52 

Barnhardt (2005) 37 0.37 0.21 Mixed Typical 103.6 

Battle (1982) 124 0.40 0.36 Mixed Learning 97.07 

Becker (2014) 127 0.59 0.62 Early Typical   

Becker (2014) 127  0.46 Early Typical  

Bellocchi (2017) 36  0.46 Early Typical  

Bellocchi (2017) 36  0.19 Early Typical  

Bellocchi (2017) 36  0.30 Early Typical  

Brock (2018) 259 0.17 0.18 Early Typical  

Bruininks (1979) 58 0.35 0.70 Secondary Typical 105 

Cameron (2015) 467  0.22 Early Typical  

Cameron (2015) 467  0.16 Early Typical  

Cameron (2015) 467  0.33 Early Typical  

Cannoni (2015) 164 0.13  Elementary Typical  

Carlson (2013) 97 0.17 0.21 Mixed Typical 107.2 

Çayir (2017) 80  0.45 Elementary Typical  

Çayir (2017) 80  0.47 Elementary Typical  

Çayir (2017) 80  0.42 Elementary Typical   

Chang (1967) 23  0.46 Elementary Typical 128 

Chang (1967) 27  0.39 Elementary Typical 130 

Chang (1967) 24  0.32 Elementary Typical 128 

Chang (1967) 26  0.29 Elementary Typical 130 

Chung (2018) 369  0.30 Early Typical  

Colarusso (1980) 40 0.01 0.36 Early Typical  

Colarusso (1980) 40  0.15 Early Typical  

Coy (1974) 51 0.11 0.05 Elementary Typical  

De Waal (2018) 174 0.18  Elementary Typical  
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De Waal (2018) 47 0.01  Elementary Physical  

Dere (2019) 80  0.82 Early Typical  

Dere (2019) 80  0.47 Early Typical  

Duffy (1972) 64 0.30 0.37 Elementary Typical  

Duffy (1972) 64  0.32 Elementary Typical  

Duffy (1972) 67 0.39 0.45 Elementary Typical  

Duffy (1972) 67  0.51 Elementary Typical  

Duffy (1972) 57 0.41 0.43 Elementary Typical  

Duffy (1972) 57  0.46 Elementary Typical  

Dunn (2006) 238 0.44 0.42 Early Typical  

Dunn (2006) 238 0.58 0.60 Early Typical  

Duran (2018) 89 0.50  Early Typical  

Duran (2018) 89 0.53  Early Typical  

Duran (2018) 89 0.48  Early Typical  

Duran (2018) 89 0.40  Early Typical  

Duran (2018) 89 0.47  Early Typical  

Duran (2018) 89 0.53  Early Typical  

Duran (2018) 73 0.56  Elementary Typical  

Duran (2018) 73 0.57  Elementary Typical  

Duran (2018) 73 0.55  Elementary Typical  

Duran (2018) 73 0.53  Elementary Typical  

Duran (2018) 73 0.51  Elementary Typical  

Duran (2018) 73 0.61  Elementary Typical  

Farmer (1997) 174 0.34 0.33 Early Typical  

Farmer (1997) 124 0.31 0.26 Early Typical  

Farmer (1997) 117 0.25 0.23 Early Typical  
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Farmer (1997) 92 0.31 0.16 Secondary Typical  

Feshbach (1977) 403  0.24 Elementary Typical  

Feshbach (1977) 403  0.25 Elementary Typical  

Feshbach (1977) 403  0.24 Elementary Typical   

FletcherFinn (1997) 28  0.11 Elementary Physical 99.4 

Foundation for 
Knowledge (1986) 

338 0.38 0.40 Elementary Typical 115.1 

Fowler (1986) 176 0.22 0.17 Mixed Typical  

French (2004) 227 0.62 0.50 Mixed Mental  

French (2004) 227 0.35 0.30 Mixed Mental  

Fuller (1973) 203  0.29 Secondary Typical 97.03 

Fuller (1983) 69 0.27 0.26 Elementary Typical 108.6 

Gebhardt (2007) 64  0.57 Early Typical  

Gebhardt (2007) 58  0.53 Elementary Typical  

Gebhardt (2007) 58  0.44 Elementary Typical  

Gebhardt (2007) 63  0.04 Elementary Typical  

Gebhardt (2007) 51  0.18 Elementary Typical  

Geertson (2016) 423 0.20 0.26 Elementary Typical  

Geis (1971) 242  0.87 Early Typical 101.5 

Glidden (1999) 66 0.15 0.13 Mixed Learning 102 

Goldstein (1994) 44 0.62 0.54 Mixed Mental 84.9 

Goldstein (1994) 44 0.65 0.47 Mixed Mental 85.9 

Greenburg (2019) 16,935 0.38 0.36 Elementary Typical  

Greenburg (2019) 16,935 0.33 0.34 Elementary Typical  

Greenburg (2019) 16,935 0.29 0.29 Elementary Typical  

Hamilton (2001) 44  0.43 Elementary Typical  
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Hanson (1969) 122  0.33 Elementary Physical 84.3 

Hasler (2019) 87 0.48  Early Physical 106.3 

Hernández (2014) 61 0.02 0.27 Early Typical 131.4 

Hick (1970) 26 0.69 0.69 Elementary Typical  

Hinshaw (1986) 39 0.70 0.63 Elementary Learning 109.8 

Hinshaw (1986) 39  0.66 Elementary Learning 109.8 

Hopkins (2019) 222 0.32 0.38 Elementary Typical  

Horn (1984) 218 0.54 0.48 Elementary Typical  

Kaemingk (2004) 15 0.35  Mixed Physical 98.8 

Kaemingk (2004) 15 0.58  Mixed Physical 98.8 

Kaemingk (2004) 15 0.60  Mixed Physical 98.8 

Kaemingk (2004) 15 0.64  Mixed Physical 98.8 

Kaemingk (2004) 15 0.61  Mixed Physical 98.8 

Kaemingk (2004) 15 0.73  Mixed Typical 113.8 

Kaemingk (2004) 15 0.47  Mixed Typical 113.8 

Kaemingk (2004) 15 0.79  Mixed Typical 113.8 

Kaemingk (2004) 15 0.62  Mixed Typical 113.8 

Kaemingk (2004) 15 0.65  Mixed Typical 113.8 

Karlsdottir (2003) 407  0.32 Elementary Typical  

Karlsdottir (2003) 407  0.26 Elementary Typical  

Kastner (2001) 280  0.31 Early Typical  

Kim (2018) 249 0.57  Early Typical  

Kim (2018) 240 0.59  Elementary Typical  

Kim (2018) 166 0.67  Elementary Typical  

Klein (1978) 679 0.50 0.41 Elementary Typical  

Klein (1978) 679 0.41 0.27 Elementary Typical  
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Klein (1978) 679 0.34 0.35 Elementary Typical  

Klein (1979) 766 0.44 0.42 Elementary Typical  

Klein (1979) 766  0.39 Elementary Typical  

Kulp (1999) 191 0.36 0.38 Mixed Typical  

Kurdek (2001) 281 0.21 0.08 Secondary Typical  

Lachance (2006) 249 0.49  Early Typical  

Lachance (2006) 236 0.43  Elementary Typical  

Lachance (2006) 224 0.37  Elementary Typical  

Lachance (2006) 214 0.36  Elementary Typical  

Leton (1962) 23 0.41 0.41 Elementary Mental  

Leton (1962) 23 0.37 0.36 Elementary Mental  

Lindgren (1978) 100 0.52 0.37 Early Typical 115.6 

Lindgren (1978) 100  0.28 Early Typical 115.6 

Lindgren (1978) 100  0.33 Early Typical 115.6 

Majsterek (1991) 84  0.14 Early Typical 96.4 

Majsterek (1991) 84  0.14 Early Typical 96.4 

Mati-Zissi (2003) 204  0.09 Elementary Learning  

Mati-Zissi (2003) 204  0.10 Elementary Learning  

Mati-Zissi (2003) 204  0.07 Elementary Learning  

Mayes (2008) 412 0.44 0.41 Elementary Typical  

Memis (2016) 168  0.45 Elementary Typical  

Memis (2016) 168  0.47 Elementary Typical  

Memis (2016) 168  0.42 Elementary Typical  

Memisevic (2018) 210 0.50  Elementary Typical  

Memisevic (2019) 140  0.17 Elementary Typical  

Meng (2019) 61  0.26 Elementary Learning  
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Moore (2016) 
71 0.43 0.48 Early Physical 

 

Moore (2016) 71 0.36 0.58 Early Physical  

Moore (2016) 71 0.48 0.56 Early Physical  

Moore (2016) 71 0.47 0.46 Early Physical  

Morgenstern (1973) 76 0.42 0.20 Secondary Mental 61.27 

Nesbitt (2018) 1,138 0.29  Early Typical  

Nesbitt (2018) 1,138 0.22  Early Typical  

Nesbitt (2018) 1,138 0.19  Early Typical  

Nesbitt (2018) 1,138 0.23  Elementary Typical  

Newton (1966) 172  0.45 Elementary Typical 99.93 

Nielson (1991) 72 0.38 0.25 Elementary Physical 89.1 

Nielson (1991) 81 0.16 0.16 Elementary Typical 99.9 

Oberer (2018) 134 0.38 0.20 Early Typical  

Oberer (2018) 134 0.30 0.24 Early Typical  

Oliver (2014) 45 0.74 0.45 Mixed Mental 104.4 

Oliver (2014) 45  0.57 Mixed Mental 104.4 

Pienaar (2019) 816 0.38 0.36 Elementary Physical  

Pieters (2012) 145 0.33  Elementary Learning  

Pieters (2015) 410 0.30  Elementary Physical 95 

Pieters (2015) 410 0.24  Elementary   Physical 98.7 

Pitchford (2016) 62 0.57 0.38 Early Typical  

Preda (1997) 60 0.39  Elementary Typical  

Richardson (1980) 77 0.22  Elementary Learning 82.21 

Richardson (1980) 77 0.22  Elementary Learning 82.21 

Richardson (1980) 77 0.20  Elementary Learning 82.21 
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Roberts (2007) 469 0.66  Early Physical 88.9 

Roberts (2007) 494  0.70 Early Physical 88.9 

Sandoval (1981) 146 0.07 0.03 Elementary Typical  

Santi (2015) 778  0.33 Elementary Typical 111.6 

Santi (2015) 778  0.19 Elementary Typical 111.6 

Santi (2015) 778  0.21 Elementary Typical 111.6 

Sapp (1984) 32 0.38  Elementary Mental 99 

Sewell (2008) 75 0.64  Secondary Typical  

Sewell (2008) 75 0.60  Secondary Typical  

Sewell (2008) 75 0.47  Secondary Typical  

Sewell (2008) 75 0.64  Secondary Typical  

Sewell (2008) 75 0.63  Secondary Typical  

Sewell (2008) 75 0.63  Secondary Typical  

Shepherd (1969) 47 0.60 0.40 Elementary Physical 98.23 

Simms (2016) 77 0.48  Elementary Typical  

Son (2006) 12,583 0.44 0.35 Early Typical  

Son (2006) 12,583 0.48 0.40 Elementary Typical  

Sortor (2003) 155 0.27 0.16 Secondary Typical  

Sulik (2018) 343 0.31 0.40 Elementary Typical  

Sulik (2018) 343 0.37 0.34 Elementary Typical  

Sullivan (2003) 168 0.42 0.32 Elementary Physical  

Taha (2016) 50 0.85  Secondary Mental 59.91 

Tillman (1974) 60  0.26 Elementary Typical 107 

Tillman (1974) 60  0.32 Elementary Typical 107 

Tillman (1974) 60  0.26 Elementary Typical 107 

Verdine (2014) 44 0.67  Early Typical  
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Wallbrown (1975) 100  0.49 Early Typical 104.1 

Wallbrown (1977) 153 0.26 0.27 Elementary Typical 116.9 

Wallbrown (1977) 153 0.18 0.24 Elementary Typical 116.9 

Webb (1985) 30 0.65 0.55 Secondary Mental 64.2 

Webb (1984) 28 0.67 0.42 Secondary Mental 61.3 

Welcher (1974) 202 0.25 0.32 Early Typical 91 

Wright (1976) 70  0.36 Elementary Typical  

Wright (1976) 70  0.37 Elementary Typical  

Wright (1976) 70  0.40 Elementary Typical  

 




